Normal operators with\cr highly incompatible off-diagonal corners

نویسندگان

چکیده

Let $\mathcal H $ be a complex, separable Hilbert space, and B(\mathcal H) denote the set of all bounded linear operators on $. Given an orthogonal projection $P \in \mathcal operator $D B(\mathc

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-diagonal Multilinear Interpolation between Adjoint Operators

We extend a theorem by Grafakos and Tao [4] on multilinear interpolation between adjoint operators to an off-diagonal situation. We provide an application.

متن کامل

Off-diagonal quantum holonomy along density operators

Uhlmann’s concept of quantum holonomy for paths of density operators is generalised to the off-diagonal case providing insight into the geometry of state space when the Uhlmann holonomy is undefined. Comparison with previous off-diagonal geometric phase definitions is carried out and an example comprising the transport of a Bell-state mixture is given.

متن کامل

Weighted Norm Inequalities , off - Diagonal Estimates and Elliptic Operators Pascal

We give an overview of the generalized Calderón-Zygmund theory for “non-integral” singular operators, that is, operators without kernels bounds but appropriate off-diagonal estimates. This theory is powerful enough to obtain weighted estimates for such operators and their commutators with BMO functions. L − L off-diagonal estimates when p ≤ q play an important role and we present them. They are...

متن کامل

Off - Diagonal

Experience shows that there is a strong parallel between metrization theory for compact spaces and for linearly ordered spaces in terms of diagonal conditions. Recent theorems of Gruenhage, Pelant, Kombarov, and Stepanova have described metrizability of compact (and related) spaces in terms of the offdiagonal behavior of those spaces, i.e., in terms of properties of X −∆. In this paper, we show...

متن کامل

Diagonal Dominance and Harmless Off-diagonal Delays

Systems of linear differential equations with constant coefficients, as well as Lotka–Volterra equations, with delays in the off–diagonal terms are considered. Such systems are shown to be asymptotically stable for any choice of delays if and only if the matrix has a negative weakly dominant diagonal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2021

ISSN: ['0039-3223', '1730-6337']

DOI: https://doi.org/10.4064/sm190819-13-2